Suberoylanilide hydroxamic acid: a potential epigenetic therapeutic agent for lung fibrosis?

نویسندگان

  • Z Wang
  • C Chen
  • S N Finger
  • S Kwajah
  • M Jung
  • H Schwarz
  • N Swanson
  • F F Lareu
  • M Raghunath
چکیده

Pulmonary fibrosis represents a fatal stage of interstitial lung diseases of known and idiopathic aetiology. No effective therapy is currently available. Based on an indication-discovery approach we present novel in vitro evidence that the histone deacetylases inhibitor suberoylanilide hydroxamic acid (SAHA), an FDA approved anti-cancer drug, has antifibrotic and anti-inflammatory potential. Human lung fibroblasts (fetal, adult and idiopathic adult pulmonary fibrosis) were treated with transforming growth factor (TGF)-beta 1 with or without SAHA. Collagen deposition, alpha-smooth muscle actin (alpha-SMA) expression, matrix metalloproteinase (MMP)1 activity, tissue inhibitor of MMP (TIMP)1 production, apoptosis and cell proliferation were assessed. Pro-inflammatory cytokines relevant to pulmonary fibrosis were assayed in SAHA-treated human peripheral blood mononuclear cells (PBMC) and its subpopulations. SAHA abrogated TGF-beta 1 effects on all the fibroblast lines by preventing their transdifferentiation into alpha-SMA positive myofibroblasts and increased collagen deposition without inducing apoptosis. However, MMP1 activity and TIMP1 production was modulated without a clear fibrolytic effect. SAHA also inhibited serum-induced proliferation of the fibroblast lines and caused hyperacetylation of alpha-tubulin and histone. Cytokine secretion was inhibited from PBMC and lymphocytes at nonapoptotic concentrations. Taken together, these data demonstrate combined antifibrotic and anti-inflammatory properties of SAHA, suggesting its therapeutic potential for pulmonary fibrosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigenetic therapy potential of suberoylanilide hydroxamic acid on invasive human non-small cell lung cancer cells

Metastasis is the reason for most cancer death, and a crucial primary step for cancer metastasis is invasion of the surrounding tissue, which may be initiated by some rare tumor cells that escape the heterogeneous primary tumor. In this study, we isolated invasive subpopulations of cancer cells from human non-small cell lung cancer (NSCLC) H460 and H1299 cell lines, and determined the gene expr...

متن کامل

Histone deacetylase inhibition promotes fibroblast apoptosis and ameliorates pulmonary fibrosis in mice.

Idiopathic pulmonary fibrosis (IPF) is a fatal disease, and therapeutic agents have shown only modest efficacy. Epigenetic alterations contribute to the pathogenesis of IPF. The histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), has been approved for clinical use in cancer; however, its potential efficacy in modulating fibroblast survival and lung fibrosis has not been exten...

متن کامل

Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid.

BACKGROUND Epigenetic programming, dynamically regulated by histone acetylation, is a key mechanism regulating cell proliferation and survival. Little is known about the contribution of histone deacetylase (HDAC) activity to the development of pulmonary arterial hypertension, a condition characterized by profound structural remodeling of pulmonary arteries and arterioles. METHODS AND RESULTS ...

متن کامل

The epigenetic agents suberoylanilide hydroxamic acid and 5‑AZA‑2' deoxycytidine decrease cell proliferation, induce cell death and delay the growth of MiaPaCa2 pancreatic cancer cells in vivo.

Despite incremental advances in the diagnosis and treatment for pancreatic cancer (PC), the 5‑year survival rate remains <5%. Novel therapies to increase survival and quality of life for PC patients are desperately needed. Epigenetic thera-peutic agents such as histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) have demonstrated therapeutic benefits in human can...

متن کامل

Histone Deacetylation Inhibition in Pulmonary Hypertension: Therapeutic Potential of Valproic Acid (VPA) and Suberoylanilide Hydroxamic Acid (SAHA)

Ad Ad Add dr dres ess s f fo for r C C Corresp pond dence: Abstract Background-Epigenetic programming, dynamically regulated by histone acetylation, is a key

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European respiratory journal

دوره 34 1  شماره 

صفحات  -

تاریخ انتشار 2009